

Proposal of common Ranking approach based on BRISK

R. Schallier MUMM/RBINS (BE)

http://www.mumm.ac.be/

'Best practice' in ranking approaches

(Ranking \rightarrow strategic mapping)

TWO APPROACHES:

- **1.** 'Calculation' of sensitivity Scores ('model')
 - Scores calculated as product of factor values (NO)
 - Scores calculated using quantitative dataset (GE)
 - ☺ 'Objective' approach
 - ⊗ Not always easy to 'understand' a Score



'Best practice' in Ranking approaches

- **2.** 'Expert evaluation' of sensitivity score (e.g. BRISK)
 - Hore 'subjective' ('rough') approach
 - ⊗ Not scientifically 'ideal'
 - Qualitative/subjective approach not necessarily 'less good'
 - Simple and easy to understand, transparent
 - Facilitates national expert validation of assigned Scores

More appropriate for use at Regional level

BRISK Vulnerability Ranking

4 Scores:

- 4 Seasons:
- Score 4 = VERY HIGH

- Winter: Dec., Jan., Feb.
- Score 3 = HIGH <u>Spring</u>: Mar., Apr., May
- Score 2 = MODERATE <u>Summer</u>: Jun., Jul., Aug.
- Score 1 = LOW
 <u>Autumn</u>: Sept., Oct., Nov.

Proposal MUMM \rightarrow apply in BE-AWARE

BRISK Ranking process for <u>each</u> feature

- **1**. Define (ecol.) characteristics, significance & location
- 2. (<u>Qualitative</u>) assessment of vulnerability
 - Based on <u>2 criteria</u>:
 - FATE OF OIL
 - IMPACT OF OIL on organisms
- 3. Assign vulnerability ranking (per season)

Proposal MUMM \rightarrow apply in BE-AWARE, but adapt:

- + "3D" vulnerability
- + 'Socio-economic' evaluation (and criteria)

<u>Criteria</u> to be considered when ranking each feature

(1) FATE of oil

- In terms of oil weathering, degradation and removal
- Varies considerably
- Influences geomorphological, ecological <u>and</u> socio-econ. vulnerability
- Main factors:
 - Wave/tidal energy exposure Shoreline slope Substrate type
 - \rightarrow <u>incl</u>. Artificial substrates: e.g. marinas & ports
 - \rightarrow "<u>3D</u>" fate in water column/seabed
 - Natural energy
 - Dilution potential
 - Seafloor sediment type

~ EXPOSURE & (chemical) RECOVERY

<u>Criteria</u> to be considered when ranking each feature

(2) IMPACT of oil on organisms/habitats

- Effects of oil on organisms
 - Smothering
 - Toxicity
 - Tainting
- Population & life-cycle considerations
 - Densely populated (small) areas
 - Spawning & nursery areas (~fish)
 - Sensitive stages/locations (~birds)
 - Threatened species & habitats, ...
 - ~ ECOL. OIL-SENSITIVITY & (biological) RECOVERY

MUMM: Suggestion of 3 additional Socio-Econ. Criteria

(3) Length of Interruption

- (!) Criteria used in France for socio-economic Index (Cedre)
- <u>Why</u>? Practical Criteria to evaluate socio-economic impact, based on length of interruption of an activity or service
- Important factors:
 - Possibility (or not) to protect activity
 - Possibility (or not) to displace activity
- <u>5 Ranks</u>:
 - 1 (day) 2 (week) 3 (week-months) 4 (to 1yr) 5 (> 1yr)

~ 'SOCIO-ECONOMIC' OIL-SENSITIVITY

(Additional socio-econ. Criteria)

(4) <u>Compensation Possibility</u>

- (!) A key assessment Factor in Norway (*MOB-method*)
- <u>Why</u>? Easy-to-use Criteria that is important when comparing Economic versus Social & Ecologic sensitivity
- Compensation can be seen as 'recovery' from economic losses
 - Can be considered as Correction factor

~ 'Economic' RECOVERY

(MOB-method) (Norway: DNV; Safety@Sea)

Environmental resources are assessed based on <u>4 Factors</u>

- I Natural occurrence (Is the resource part of natural system in the area?)
- II <u>Compensation</u> (Can the resource be economically compensated?)
- III <u>Conservation Value</u> (Environmental value of the resource?)
- IV <u>Sensitivity</u>: (Sensitivity towards oil? *incl. recovery*)

Ranking of ecological and socio-economic features <u>combined</u>

- Apart from ecological features, also
- Recreational activities
- Industries based on natural resources

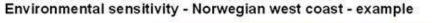
(MOB-method)

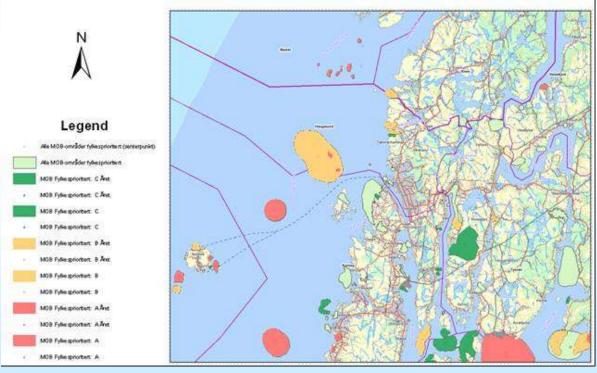
Evaluation	Factor value				
		3	2	1	0
Natural occurrence	Ι	-	Yes	No	-
Can be compensated	II	-	No	Yes	-
economically					
Conservation value	III	National/International	Regional	Local	Insignificant
General sensitivity to oil	IV	High	Medium	Low	Insignificant

• The level of priority, is calculated with formula:

$- P = V_I x$	$V_{II}x$	$V_{III} x$	V_{IV}
---------------	-----------	-------------	----------

Priority					
	Α	B	С	D	\mathbf{E}
Model result	36	24	12	8	2
		(18)	(9)	4	1
				(6)	(3)





(MOB-method)

Priority					
	Α	В	С	D	\mathbf{E}
Model result	36	24	12	8	2
		(18)	(9)	4	1
				(6)	(3)

(additional socio-econ. Criteria)

(5) <u>Social nuisance</u>

- (!) Term used by ITOPF to describe social impact
- Why? MUMM felt need of 'social sensitivity' Criteria
- Criteria to assess:
 - Public concerns about spill-impacted area
 - Public health issues
- Is factor of:
 - Coastal population densities
 - Degree of communities/activities based on natural resources
 - Impact on Sites with high ecological or heritage value

<u>STEP 2 – SUMMARY</u>

PROPOSED RANKING PROCESS FOR <u>EACH</u> FEATURE:

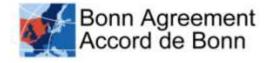
(1) Define characteristics, significance & location

(1) Assess vulnerability, taking into account 5 Criteria:

- **1**. FATE OF OIL
- 2. IMPACT OF OIL

(+ 3 additional socio-economic criteria)

- **3. LENGTH OF INTERRUPTION**
- 4. COMPENSATION
- 5. SOCIAL NUISANCE


(~exposure; chemical recovery)

(~ ecological sensitivity; biological recovery)

- (~ socio-economic sensitivity)
- (~economic recovery)
- (~social sensitivity)

(1) Assign vulnerability ranking (per season)

And now time for discussion...

http://www.mumm.ac.be/