

Step 3: Development of Integrated vulnerability maps

Ward Van Roy MUMM/RBINS (BE)

http://www.mumm.ac.be/

Contents

- **1**. Introduction
- 2. Ecological vulnerability map
- 3. Socio-economic vulnerability map
- 4. Integration: an overview of the possibilities
- **5.** Conclusion

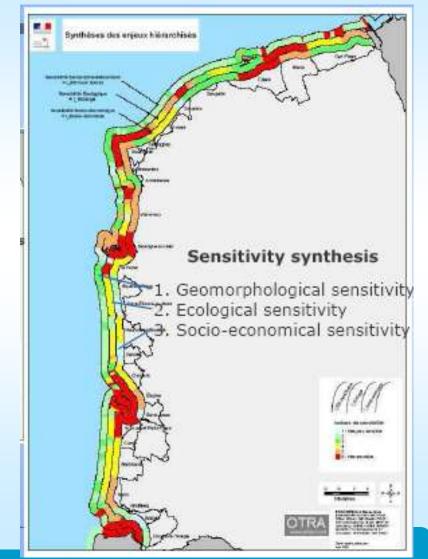
[2]

Introduction

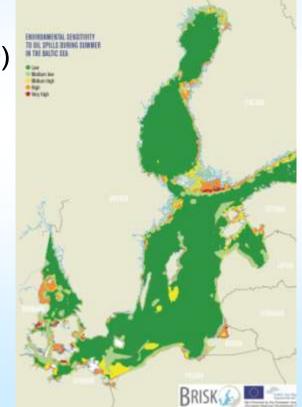
- RISK DAMAGE = PROBABILITY x VULNERABILITY
- Integrated (Total) or separated vulnerability
- Integrated vulnerability = combination of all features (cfr. NO, UK)
 - Ecological and Socio-economic combined
- Separated vulnerability (cfr. FR)

Socio-economic ⇔ Ecologic

- BE-AWARE: combination
 - Separate vulnerability maps (socio-economic + ecological)
 - Integrated vulnerability maps
 - Balance between ecologic and socio economic features
 - Basis for damage maps
 - Different possible approaches


[4]

Integrated versus separated

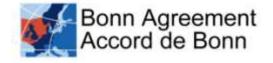


Ecological vulnerability map

- BRISK (~ environmental sensitivity)
- Seasonal Features layers = ranked (score 1-5)
- Additive model (sum of all feature layers)
- 4 seasonal vulnerability maps (score 0-40)
- Reclassified (5 levels)
 - Equidistant scale (DK)
 - Linear increasing scale (BRISK)
 - Spreading
 - Expert input
- 1 Deeper water vulnerability map (<20m)</p>

Socio economic vulnerability

- Seasonal Features layers = ranked (score 1-3)
- Additive model (superposition of all feature layers)
- 4 Seasonal socio-economic vulnerability maps
- Reclassification
 - <u>3</u> levels
 - Equidistant scale or linear scale
 - Expert input
- 1 Deeper-water socio-economical vulnerability (<20m)</p>
 - Deeper water fisheries (lobster, ...)
 - Mineral extraction
 - Problem with offshore fisheries (occur in complete water column)



Integration: an overview of the possibilities

- Different approaches
 - **1**. Equality between EC en SE (~BRISK)
 - 2. Ecosystem preference by correction scores (~NO approach)
 - **3.** Highest rank approach on EC and SE maps
 - 4. Sum of EC (0-5) and SE (0-3) vulnerability maps
- Expert input
- Separate deeper-water scenario (<20m)

Approach 1. Equality between EC en SE (BRISK)

- Ecological and socio-economical are complementary
- Same max score (5) for EC and SE vulnerability feature layers
- Sum of all features layers both EC and SE (additive model)
- Reclassification (0-5)
- Simplicity
- ☺ Risk of loosing highest vulnerability scores
- ⊗ Requires perfect complementarity between EC and SE
- ℬ Risk of undervaluing EC or SE

Sum of feature layers Reclassification 3 5 = 3 + 2 4

Approach 2: Ecosystem preference by correction scores

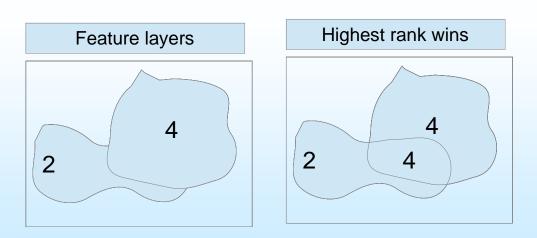
- Variation on Approach 1
- Use correction factor to recalculate feature scores
 - Features that can not be compensated

 \rightarrow correction factor (e.g. x2)

Natural features

 \rightarrow correction factor (e.g. x2)

- Additive model on all features
- ☺ Focus on ecosystem
- ℬ Complex



Approach 3: Highest rank replacement model

- based on total EC and SE vulnerability maps
- No complementarity between EC en SE
- No sum but only highest sensitivity rank is used
- ☺ No risk of loosing highest sensitivity areas due to averaging
- ☺ Complex

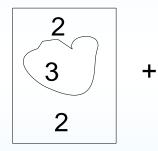
Highest Rank Model

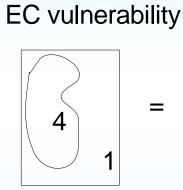

Approach 4: Sum of EC (1-5) and SE (1-3) vulnerability maps

Different max scores for EC and SE vulnerability maps

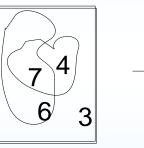
Ecological: 5 🗇 Socio-economical: 3

- Additive model
- Reclassification
- ☺ Focus on EC vulnerability
- ③ Simple
- ⊗ Risk of losing high sensitive areas due to averaging

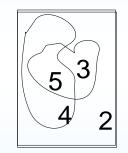




=



SE vulnerability



Reclassification

Deeper water scenario

- Separate annual EC and SE vulnerability map
 - No pronounced seasonal variation = Simplification
 - Deeper water ecologic features
 - Problem with feature that occur in both surface as deeper water (i.e. offshore fishery)
 - Integration of EC and SE deeper water vulnerability
- Risk for damage
- = (Probability blow out + Probability oil entrainment to deeper water)

x Deep sea vulnerability (EC)

 Due to lack of time and difficulties the development of this scenario (SE) is moved to the next phase of the project

Conclusion

- No optimal solution (yet)
- GIS data and feature maps are needed first
- Expert advise during mapping and reclassification
- Deep-sea scenario (1 map?, What about fisheries,)
 - \rightarrow Moved to next phase
- More debate is required

