BE-AWARE II Project Seminar Trondheim (Norway): 26-28 January 2015

Task C: Methodology

- 1. Problem:
 - Changing risk patter (More traffic, different traffic, wind farms, offshore, increased safety options, ...)
- 2. Overall objective Common ranking of different reaction options
- 3. Mean common comprehension of the risk for impacts (damages) from oil pollution
- 4. Tasks
 All BA-partner will work together on the development of a risk assessment tool (Dublin agreement)

1. Principle

Scenarios

Scenario name	Risk Reducing Measure	Response Measure
Reference 1	now	
Reference 2	2020	
Vessel Traffic Services (VTS)	X	
Traffic Separation Schemes (TSS)	X	
AIS alarm (Wind turbines)	X	
E-navigation	X	
New Emergency Towing Vessels (ETVs)	X	
Improved night detection capability		Х
Further use of dispersants		X
50% increase in response equipment		Х

- Task C: Methodology
 - Model Modifications and Methodology Note
 - Drift and spreading

Drift

 Drift at surface due to wind and mean current

Schematic illustration of the resulting drift velocity (yellow) as a superposition of wind drift (light blue) and mean current drift (dark blue).

Drift

Drift at surface due to wind

Result from BRISK project:

D-coeff = 1 => Ddrift

= D,

= $0.023 \cdot \overline{W}$, W: Wind speed (m/s)

D: Wind direction (deg)

(in consense with standard oil spill models)

Drift

Mean drift:

 One year OSERIT
 modelled average drift
 in upper 30 m:

Drift

- Mean drift: Average over sub area,
- focus on areas with intensive traffic
- Channel: Wind dependency

Meteorological	Description	Mean drift speed (m/s)	Direction of drift (ºN)
area			
А	West of Ireland	0,05	45
В	NW of Scotland	0,07	45
С	West of Norway	0,10	45
D	East of UK	0,02	150
E	West of Denmark	0,07	45
F	Southern North Sea	0,01W, projected	30ºN, 210 ºN
G	English Channel	0,01W, projected	60ºN, 240ºN

Spreading

 Spreading at surface due to gravity and viscosity

Example: Development of spill radius as function of oil type (viscosity) for a 30,000 t spill

 $R(t,M,v) = 0.113 \cdot M^{(0.22)} \cdot [\{0.13-0.02\log(v)\} \cdot t + \{3.8-0.2\log(v)\}],$

R : Radius of oil spill (km)

t : Time (Timer)

M : Mass of spilt oil (t)

v : Kinematic viscosity (cSt) at the given temperature

log : 10- logarithm (Briggs)

Spreading

Tidal effect
 Spreading at surface due to tidal ellipsoids

Tidal velocities (m/s):

II (red): Off Brest

III (yellow): Central English Channel

The axis of ellipsoids are determined based on the hydrodynamic modelling by MUMM, the ellipsoid is added for illustration purpose.

Drift and spreading

Tidal ellipsoids + winddrift (after 1½ days)

Wind: 7 m/s, 120 Degrees North

Tide: Off Brest, Major Axe 0,7 m/s, Minor Axe 0,3 m/s, Angle 45 Deg. North

As left, all time steps inside a tidal cycle are shown (1 hr steps)

Effective radius R' including tide: $R' = R_{gravity} + R_{tide}$

Chemical dispersion

- Drift: As main drift
- Spreading: Process is turbulent dispersion
 Plume spreading as 1:10
 - => R of plume: R(t)=Ro + 1/10·Vdrift·t (slow spreading comp to gravity and tidal)
- Degradation of chemically dispersed oil is faster than non oil on surface

Verification with OSERIT

 Comparison with prelim results from OSERIT 3D oil spill model (MUMM). 8700 m³, medium Arabian crude, 10 days, start 1. december 2014, Bft 4-8 from N and W)

MUMM contribution to the modelling task E:

1. Provision of met-ocean data in support to COWI modelling activities

2. Validation of COWI's simple drift model against results from OSERIT, MUMM oil spill drift and fate model

Extension of OSERIT to the whole BA area

- BA area is 4 times wider than OSERIT's original area
- Wind forcing from the UK Met Office prediction
- Surface currents from the Copernicus Marine Service Implementation completed on 14/01/2015.

OSERIT to validate COWI results

OSERIT will be used to validate COWI results on very specific scenarios:

- Release of 8700t of medium crude oil
- Dominant wind of ~7 Bft from SW
- One release location per sub-region

Studying the variability within each sub-region

Redoing these simulations each day for a year will allow to gain an idea of the variability of the spill the spill was a sub-region